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We study energy localization in a finite one-dimensional �4 oscillator chain with initial energy in a single
oscillator of the chain. We numerically calculate the effective number of degrees of freedom sharing the energy
on the lattice as a function of time. We find that for energies smaller than a critical value, energy equipartition
among the oscillators is reached in a relatively short time. On the other hand, above the critical energy, a
decreasing number of particles sharing the energy is observed. We give an estimate of the effective number of
degrees of freedom as a function of the energy. Our results suggest that localization is due to the appearance,
above threshold, of a breather-like structure. Analytic arguments are given, based on the averaging theory and
the analysis of a discrete nonlinear Schrödinger equation approximating the dynamics, to support and explain
the numerical results.
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I. INTRODUCTION

We study localized excitations in oscillator chains moti-
vated by the need to understand phenomena occurring in
DNA molecules �transcription, denaturation, etc.�. Such phe-
nomena involve the generation and propagation of localized
excitations along the macromolecule �1�, so that the analysis
of existence, stability, and movability of periodic and almost-
periodic localized structures in oscillator chains is of rel-
evance. An important result is a theorem of MacKay and
Aubry �MA� �2� on the existence and stability of time-
periodic localized excitations in chain models satisfying suit-
able structural conditions. The MA theory �2� states that, for
large enough initial energy placed on a single particle, the
subsequent motion is close to the periodic motion that par-
ticle would have if it were isolated, its interaction with the
nearby particles being the more negligible the higher the
energy. In a subsequent proof given by Bambusi �3�, it was
shown that if one starts close enough to the exact breather
solution, the corresponding orbit stays close to a breather
solution for exponentially long times. For a review on dis-
crete breathers, see Refs. �4,5�. Breathers represent particular
solutions of the system, and as such, they correspond to suit-
ably selected initial data. On the other hand, in the physical
phenomenon of DNA transcription, the initial conditions are
fixed by the problem and cannot be chosen arbitrarily. In
such a case, a localized initial excitation might give rise to a
motion that is far from a simple breather. Thus, a natural
question is whether, in the physical case, energy spreads out

to all degrees of freedom available, or if it stays localized on
a few degrees of freedom, giving rise to a breather or some
other localized structure �moving or at rest�. In the present
paper, we study the dynamics corresponding to the initial
excitation of a single particle of a finite one-dimensional �4

chain with periodic boundary conditions. We focus on the
localization of energy in real space, i.e., we count the frac-
tion of particles sharing the energy after some long �but
fixed� time scale. The qualitative findings are as follows;
there exists a threshold value of the energy, below which
spatial equipartition of energy takes place. Above threshold,
the larger the energy, the smaller the number of particles
involved in the motion. The mechanism triggering energy
localization just above the threshold seems to be the forma-
tion of a breather centered at the initially excited site. Such a
breather becomes narrower and narrower as the energy in-
creases, eventually approaching, at very high values of en-
ergy, the single-site breather corresponding to the �zeroth-
order� anticontinuum limit solution of Aubry �5�.

It is interesting to contrast our present results to the usual
phenomenology of the Fermi-Pasta-Ulam problem �FPU�
�6,7�. Our results are somewhat complementary to the usual
FPU phenomenology in real space: instead of a single mode,
we excite a single particle, and we observe the lack of equi-
partition at high energy instead of at low energy. Moreover,
we find that breathers play the same significant role played
by solitons in the standard FPU problem. In particular, as
energy increases, soliton formation in the standard FPU
problem is responsible for the limitation of the number of
modes sharing the energy �see, e.g., �8��, while we find that
breather formation is responsible for the decrease in the
number of particles taking part in the motion. It is of interest
to mention a recent paper by Flach et al. �9�, in which the*Electronic address: ponno@math.unipd.it
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concept of a q breather in the standard FPU problem has
been introduced. This paper is organized as follows: In Sec.
II, we describe the numerical results, and Sec. III is devoted
to the analytic arguments, while in Sec. IV we have the con-
clusions and discussion.

II. NUMERICS AND RESULTS

A. General setting

The Hamiltonian equations of motion of a �4 oscillator
chain with N degrees of freedom and periodic boundary
conditions are

ẍn = xn+1 + xn−1 − �2 + m2�xn − �xn
3, n = −

N

2
, . . . ,

N

2
,

�1�

x−N/2 = xN/2, ẋ−N/2 = ẋN/2. �2�

The nonlinear coupling constants � and m are positive
parameters defining the model. These equations of motion
were integrated numerically using a 10th-order Runge-Kutta-
Nystrom integrator �10�. The initial energy E is always
placed at the central particle located at the site n=0, i.e.,

xn�0� = a�n,0, ẋn�0� = b�n,0, �3�

where �n,0 denotes the Kronecker delta and the constants a
and b are related to the energy E by

E =
b2

2
+

�m2 + 2�a2

2
+

�a4

4
. �4�

In the numerical calculations, values of m ranging from
m=�3 to m=10 have been used, for a chain of N=500 par-
ticles. Without loss of generality, we chose to fix �=1. In-
deed, for other values of � the rescaled initial condition

b= b̃ /�� and a= ã /�� in Eq. �4� corresponds to the rescaled

energy �E= b̃2 /2+ �m2+2�ã2 /2+ ã4 /4, so that the dynamics
depends on the single control parameter �E. For what con-
cerns the choice of a and b, we realized that localization
takes place at a lower energy when the initial excitation is
defined by the following kick-like excitation a=0 and
E=b2 /2. The results reported refer to this special case, which
does not require varying the initial conditions for a fixed
energy. Note that because of a symmetry of Eq. �1�, one
obtains the same dynamics both for positive and for negative
values of b. The reason for the special role played by kick-
like excitations will be explained below.

In order to measure the degree of localization on the lat-
tice, we use a time-dependent measure of the effective num-
ber of degrees of freedom sharing the energy at time t, as
first introduced in Refs. �11,6� and explained in the follow-
ing. We define the normalized instantaneous energy of
particle n by

�n �
1

E
� ẋn

2

2
+

m2xn
2

2
+

�xn+1 − xn�2

4
+

�xn − xn−1�2

4
+

�xn
4

4
� ,

�5�

where at the exceptional end point n=−N /2 we apply Eq. �5�
with xn−1=xN/2−1, as the ends are identified by the periodic
boundary condition. Because of this identification of the end
points, the chain has effectively N degrees of freedom only,
and not N+1. It can be shown that 	N/2−1

N/2 �n�t�=1 if E in Eq.
�5� is taken as the energy constant of motion. From the in-
stantaneous �n defined in Eq. �5�, we construct the effective
number of degrees sharing the energy, Nef f�t�, as

Nef f�t� � exp
− 	
n=−N/2

N/2−1

�n ln �n� . �6�

Note that, in principle, Nef f reaches its maximum at equipar-
tition, i.e., �n=1/N and Nef f =N. Any other distribution of the
�n’s, which necessarily implies some degree of energy local-
ization, yields a lower value of Nef f. The limit case is
�n*

=1 and �n=0 for n�n*, for which one has Nef f =1, i.e.,
extreme localization. In fact, with our particular choice of
kick-like initial condition, we start with the system in such a
state, with energy concentrated in the site n=0. In actual
computations, the argument of the exponential in Eq. �6� is
averaged over a suitable time window, in order to avoid fluc-
tuations on short time scales. In numerical simulations, the
absolute maximum equipartition value Nef f =N is never ob-
served. The actual value of Nef f corresponding to equiparti-
tion is instead the lower value

� � 
Nef f

N
�

equip.
� 0.7, �7�

which is due to fluctuations of the �n’s, as explained from the
phase-space arguments in �7,12,13�. In the present numerical
experiments, with N=500 and ��0.7, the equipartition
value of Nef f is N��350.

B. Numerical results

In the numerical integrations, we fix a maximum integra-
tion time Tm; and the results shown refer to Tm=5�103.
Longer runs have been made to confirm the validity of the
present conclusions. The plots of Nef f vs time for a given
energy E show the following qualitative behavior. There is a
critical energy Ec such that if E�Ec, then Nef f�t ;E� starts
from its initial value Nef f�0;E�=1 and reaches the equiparti-
tion value Nef f�Tm ;E���N in a short time scale, that is
maintained up to Tm for any E�Ec. On the other hand, if
E	Ec, then Nef f saturates at a level that is lower than the
equipartition value, so that Nef f�Tm ;E���N, and Nef f�Tm ;E�
turns out to be a decreasing function of the energy E, i.e.,
energy tends to localize in space. More precisely, we get the
following empirical law:

1

Nef f�Tm;E�
�

1

�N
, E � Ec,
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1

Nef f�Tm;E�
�

1

�N
+ 
 ln��E/m2� + �, E � Ec, �8�

where Ec� 8m2

3� . We note that if m is large enough, the coef-
ficients 
 and � in Eq. �8� turn out to be independent of the
parameters entering the model. More precisely, fitting the
numerical data yields 
� �1.5,2� and �� �0.5,0.9�. Note
also that in the limit N→
 the first contribution on the right-
hand side of Eq. �8� tends to zero. As we discuss below, the
numerical laws of Eq. �8� represent a clear signature of en-
ergy localization due to the formation of breathers in the
system.

In Figs. 1 and 2 we plot Nef f�t ;E� vs time up to the time
Tm for different values of the energy E and for m=7 and
m=10. In Fig. 3, we plot ln�E� vs 1/Nef f�Tm ;E� for four
different values of m, namely, m=�3, m=�10, m=7, and
m=10. Note that above some critical energy depending on m,

the profiles become almost rectilinear, especially for m=7
and m=10. In Fig. 4, we plot instead ln�E /m2� vs
1/Nef f�Tm ;E�. Now the curves corresponding to m=�10, 7,
and 10 appear almost superposed, while the curve corre-
sponding to m=�3 is clearly detached. As we explain below,
when m is large, we expect one parameter only ruling energy
localization in the system, and such a parameter turns out to
be proportional to E /m2 �recall that we set �=1�. Clearly, we
can deduce from Figs. 3 and 4 that in the case m=1.73, the
phenomenology of localization is similar to that of the other
cases, but the two parameters ruling it, E and m2, do not
merge in a simple combination.

In Ref. �11�, a plot similar to Fig. 3 is reported for the
double-well �4 model, consisting of the same equations of
motion �1� with a minus sign in front of the m2 term. Apart
from the fact that the model is different from the model

FIG. 1. Nef f vs time for m=7, at different values of the energy E.
Equipartition level at N=500 is �N=350 and Ec=130.

FIG. 2. Nef f vs time for m=100, at different values of the energy
E. Equipartition level at N=500 is �N=350 and Ec=266.

FIG. 3. Logarithm of the energy E vs 1/Nef f�Tm ,E� for four
different values of m. Note that the slope of all curves look the same
but for the curve at m=1.73.

FIG. 4. Logarithm of the ratio E /m2 vs 1/Nef f�Tm ,E� for the
same four different values of m of Fig. 3. Note that all curves are
superposed but the curve at m=1.73.
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considered, we emphasize that in Ref. �11� the authors plot-
ted the normalized logarithm of Nef f �the so-called spectral
entropy� vs the energy, from which no simple law immedi-
ately appears. Our present choice of graphs follows the lead
given in Ref. �3�, where it was pointed out that a logarithmic
dependence of the form of Eq. �8� should be expected.

III. THEORETICAL ANALYSIS

A. Averaging

We introduce three suitable quantities defined in terms of
the parameters m and � of the �4 model, and of the param-
eters a, b, and E defining the initial data �see Eqs. �3� and
�4��, namely,

E �
b2 + m2a2

2
= E − a2 −

�a4

4
, �9�

ei� �
ma + ib

�2E
, �10�

g �
3�E
4m2 . �11�

They represent, respectively, part of the energy initially
placed at site n=0, the phase of the initial datum �i=�−1�,
and what turns out to be the only fundamental parameter of
the theory after averaging �see below�. Using the complex
change of variables �x , ẋ��t�� �� ,�*���� defined by

�n = eimte−i�mxn + iẋn

�2E
, �12�

t � m� , �13�

into the equations of motion �1�, we obtain

i
d�n

d�
= −

1

2
��n+1 + �n−1 − 2�n� + g
�n
2�n + Rn��,�*,�� ,

�14�

where the remainder Rn is

Rn��,�*,�� � −
1

2
��n+1

* + �n−1
* − 2�n

*�e2i�m2�−��

+ g�
�n
2�n
*e2i�m2�−�� +

1

3
�n

3e−2i�m2�−��

+
1

3
��n

*�3e4i�m2�−��� . �15�

The periodic boundary conditions �2� simply imply that
�−N/2=�N/2, while for what concerns the initial data �3�, by
use of Eqs. �9� and �12�, we obtain �n��=0�=�n,0. The refor-
mulation of the problem in terms of the complex variables �n
is, up to this stage, exact. Now, we observe that

�Rn� �
m2

�
�

0

�/m2


Rn��,�*,��
�=const.d� = 0, �16�

i.e., the average of Rn over one period of the fast oscillation,
� /m2, at constant �, is zero. This means that Rn is expected
to give small contributions to the dynamics and can be ne-
glected in a first approximation, which is an application of
the averaging technique; see for example, Ref. �14�. Thus,
we are left with the simplified problem:

i
d�n

d�
= −

1

2
��n+1 + �n−1 − 2�n� + g
�n
2�n, �17�

�n�0� = �n,0, �18�

�−N/2��� = �N/2��� . �19�

.
Note that, as an effect of averaging, the only relevant

parameter entering the theory is now the constant g defined
in Eq. �11�. Equation �17� is a discrete nonlinear Schrödinger
equation �DNLS� �15�. In the theoretical analysis below, we
will work, for convenience, in the limit N→
, which is
however consistent with the initial datum �18� and the peri-
odic boundary condition �19�. In what follows, we study Eq.
�17� as a good approximation to Eq. �1�. In this respect, a
few fundamental remarks are in order. �i� In the range of
values of m where Eq. �17� is valid, any critical behavior in
the dynamics of the system must correspond to the crossing
of some critical value of the parameter g. This explains why
we found, for m large enough, the universal law �8�, and a
critical energy Ec� 8m2

3� . �ii� For what concerns the critical
energy Ec, note that g��E /m2, so that g=gc implies Ec
�m2 /�; since E=E−a2−�a4 /4, one gets that the minimum
of Ec over all the possible initial conditions is reached at
a=0, namely, for kick-like initial data. �iii� The averaging
performed above is expected to be valid if m is large enough,
so that the oscillations at frequency m are much faster than
the drift described by Eq. �17�. Thus, as the value of m in-
creases, a better and better agreement with what is predicted
by Eq. �17� is expected. Figures 3 and 4 suggest that
m=1.73 has to be considered too low, in the sense that, for
that value, Eq. �17� does not represent a good approximation.

B. DNLS analysis I: Asymptotic linear map

A simple way to understand our numerical law is as fol-
lows. First of all, let us suppose that N→
 and that a time-
periodic, strongly localized solution of Eq. �17� exists for
some g. Its frequency is determined, in a first approximation,
by neglecting the coupling of the initially excited sites to the
neighboring ones �the so-called anticontinuum limit of
Aubry�. Rescaling time as t→� /g one can rewrite Eq. �17�
as follows:

i
d�n

d�
= − ���n+1 + �n−1 − 2�n� + 
�n
2�n, �20�

where ��1/ �2g�. Both approaches in Refs. �2,3� start, at
order zero, by putting �=0, which is equivalent to neglecting
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the discrete Laplacian on the right-hand side of Eq. �17�.
In Ref. �3�, it was observed that a breather solution of Eq.
�20� is expected to be exponentially localized in space, with
a profile decreasing like e−k���n, and an asymptotics
k���� ln�1/�� was guessed on the basis of Nekhoroshev’s
theorem. This is our starting point. However, we go on to
refer, for consistency, to Eq. �17�. Neglecting the discrete
Laplacian yields �n����e−ig
�n�0�
2�, which, when matched to
the initial datum �18�, yields �n���=�n,0e−ig�. This is valid if
g is large enough �which, in the equivalent formulation
pointed out above, corresponds to �=1/ �2g� small enough�.
The frequency of the zero-order, single-site breather is thus
g. Now, following �4�, if the motion of the chain is really
localized around the site n=0, at site n�0 nonlinearity can
be neglected, and thus, we are led to look for an asymptotic
�n→
� solution of the linearized DNLS equation �17� in the
form �n���=une−ig�. Thus we obtain the linear map


un+1

un
� = 
2�1 − g� − 1

1 0
�
 un

un−1
� . �21�

Suppose we start at a site n0�0 and iterate the map to
the right. If �± denote the two eigenvalues, and V± denotes
the corresponding eigenvectors of matrix M, and if
Un0

=c+V++c−V−, the result of the iteration is

Un0+n = MnUn0
= c+��+�nV+ + c−��−�nV−. �22�

The only way to have Un0+n→0 as n→ +
, is that c− =0
�a condition on Un0

� and g	2 so that �−�−1��+�0. In
such a case, we have �+=1−g+��1−g�2−1, and

Un0+n � �− 1�n
�+
n = �− 1�ne−n ln�1/
�+
�. �23�

Thus, if a localized excitation persists on the lattice, it as-
ymptotically decreases, on the right, as e−kn. The rate of de-
crease k can be obviously identified with the inverse of the
number of particles taking part in the motion of the chain.
One has, for g�2,

1

Nef f
� k = ln� 1

�g − 1� − ��g − 1�2 − 1
� � ln�2g� . �24�

Now, recalling the definition of g given in Eq. �11�, one finds
that the threshold condition g�2 reads

E = E − a2 − �a4/4 �
8m2

3�
. �25�

In terms of the energy E, the threshold has a minimum ap-
proximately at a=0, which explains the special role played
by the kick-like initial excitations, as follows. These excita-
tions minimize the energy threshold for breather formation
on the lattice. Condition �25� for a=0 yields the critical
energy �8�. The expression of 1/Nef f given by Eq. �24� for
g�2, in the case a=0 �i.e., g�E�, explains the numerical
law �8�, namely,

1/Nef f � ln
�E

m2 �, E � Ec =
8m2

3�
. �26�

Note that it follows from Eq. �24� that when
g→2+, 1 /Nef f →0, and for g�2, the eigenvalues �± have
both unitary modulus, which implies that no localized state is
possible. This is in qualitative agreement with law �8� for the
case E�Ec �recall that, for the sake of simplicity, it was
assumed N→
�. Last, we note that the no correct asymptot-
ics can be deduced from �24� in the limit g→2+: indeed, at
the beginning we made the zero-order hypothesis of single-
site breather, i.e., of a strongly localized excitation, which
means that 1 /Nef f �k�g� must be very large.

C. DNLS analysis II: Radiation and solitons

In this section, we analyze in some detail the dynamics of
the DNLS equation, Eq. �17�, in order to understand the case
when g is small �g�2�. We start by seeking a solution of Eq.
�17� in the form

�n��� = e−ig���n,0 + �n���� , �27�

and we linearize the resulting equations of motion for the
�n’s. Consistency with the initial datum �18� imposes that
�n�0�=0 for any n. Note that e−ig��n,0 is not an exact solution
of the DNLS equation �17�, but, if the �n’s remain small, in
the linear approximation, it can be guessed that the real so-
lution is close to it. Because of the symmetry of Eqs.
�17�–�19�, its solutions satisfy �−n���=�n���, which because
of Eq. �27� implies �−n���=�n���.

For n�1, the linearized equations of motion for the �n’s
are

i�̇n = −
1

2
�n,1 −

1

2
��n+1 + �n−1 − 2�n� − g�n, �28�

where the dot denotes the derivative with respect to �. Equa-
tion �28� can easily be analyzed by means of the Fourier
transform. Substituting

�n��� =
1

2�
�

−�

�

�q���einqdq , �29�

into Eq. �28� and using �n,1=�0
2�ei�n−1�qdq / �2�� yields

d�q

d�
= i�g − 2 sin2�q���q +

i

2
e−iq. �30�

The solution of the latter equation, corresponding to the ini-
tial condition �q�0�=0 �recall that �n�0�=0�, is

�q��� = e−iqei�g−2 sin2�q��� − 1

2�g − 2 sin2�q��
. �31�

Now, if g�2, there exist two values of q� �−� ,��, say q±,
symmetrically located with respect to q=0, such that
g−2 sin2�q±�=0. In such a case, it follows from Eq. �31� that
if �q=q−q± is small enough, then
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�q±�q
 � � sin��q sin�q±���
�q sin�q±�

� , �32�

i.e., modes very close to q± tend to grow almost linearly in
time, which in turn implies that all the �n’s grow. On the
other hand, if g	2 there is no singularity �i.e., resonance� in
the denominator of Eq. �31�, and the �n’s are bounded �and
small if g is large�. Of course, the resonance at g�2 and
the growth of the modes q± implies that the linear approxi-
mation made above breaks down in a finite time, and one has
to attack the problem taking into account the effect of the
nonlinearity.

The presence of two dominant �resonant� modes only sug-
gests that the dynamics of the system for g�2, after a tran-
sient time, can be understood in the narrow packet approxi-
mation. To fix ideas, and for the sake of simplicity, we treat
the case of one mode only, say q+. More precisely, we search
for a solution of Eq. �17� in the form

�n��� = ei�q+n−g����x = n,�� , �33�

where ��x ,�� is a slowly varying function of x. By substi-
tuting Eq. �33� into �17�, formally expanding the finite dif-
ferences up to second order one gets

i�� = − i�1 − �1 − g�2�x +
g − 1

2
�xx + g
�
2� . �34�

In deriving the above nonlinear Schrödinger equation �NLS�,
we repeatedly used 2 sin2�q+�=1−cos�q+�=g. As is well
known, the NLS equation �34� may have soliton solutions,
depending on the initial data, only if the coefficients of the
dispersive and nonlinear terms �the second and third term on
the right-hand side, respectively� have the same sign, which
in this case means g	1 or, in terms of the critical energy
E	Ec /2=4m2 / �3��.

If we had considered mode q−, we would have obtained
an equation identical to Eq. �34� up to the sign in front of the
translation term ���x� �actually, this is the technical fact that
allows one to treat the two modes separately�.

The qualitative scenario for energy localization emerging
from the above analysis is the following. At low energies,
0�E�Ec /2, one has the resonant radiation of two Fourier
modes q±, which gives rise to equipartition in real space. If
Ec /2�E�Ec, the resonant modes are expected to have
slowly modulated amplitude; in this range, energy can start
to localize inside NLS-like solitons, which move both on the
right and on the left �by the symmetry of the problem�. When
E approaches Ec from below, the velocity of propagation of
the solitons tends to zero, the resonant modes q± both ap-
proach the value q=�, and the band-edge mode is known to
bifurcate to the breather �4�. Finally, above Ec, a breather
centered at the initial site �n=0� appears, becoming narrower
and narrower as the energy increases. However, from the
numerical results we obtained, we must conclude that the
effect of localization due to solitons, if any, must be much
weaker than the localization due to breathers. Indeed, no pre-
localization at Ec /2 was observed, and laws �8� are not com-
patible with NLS solitons.

IV. DISCUSSION AND CONCLUSIONS

We have studied a complementary FPU problem in real
space �for the �4 chain�, showing that breather formation is
the mechanism triggering energy localization on the lattice,
thus preventing spatial equipartition of energy if the total
energy is large enough �16�. With respect to the standard
FPU problem and the possible relevance of the present re-
sults to the dynamics of biomolecules, we make the follow-
ing concluding remarks.

�i� The energy threshold Ec�8m2 /3� seems to be inde-
pendent of the number N of degrees of freedom �in varying
N from 100 to 500, we did not observe any significant varia-
tion�. This means that energy localization in real space might
take place at zero temperature: Ec /N→0 as N→
 �we iden-
tify temperature with specific energy�. This would imply that
such FPU phenomenology in real space could be relevant at
any temperature. However, one should investigate what hap-
pens for a more general initial condition, involving, for ex-
ample, a large number of particles.

�ii� According to the theorem of Ref. �3� and also pointed
out in Ref. �17�, the lifetime of the breather is expected to be
finite but very long, a stretched exponential of the inverse of
the small parameter of the theory. With reference to our Figs.
1 and 2, this means that waiting for a longer time should
make the value of Nef f�t ;E� reach the equipartition value
N�. We did not investigate this fact. However, in light of
the previous remark, it would be interesting to study the
dependence of the Nekhoroshev lifetime found by Bambusi
in Ref. �3� on the energy and on the number of degrees of
freedom of the system. If such a lifetime depends only on the
energy E, then it is not relevant in the thermodynamic limit
�E�N→
�. On the contrary, if this lifetime depends on the
specific energy E /N, then it is significant below some small
but finite temperature. Only in this latter case could the
breather be relevant in the real physics of biomolecules.

�iii� The excitation of a single particle corresponds to the
excitation of all normal modes of the system in a special
combination. In the standard FPU problem, this amounts to
start with an almost-equipartited state. The absence of equi-
partition in real space would imply that the FPU phenom-
enology �freezing of degrees of freedom, lack of equiparti-
tion, etc.� might be generic, i.e., observable for generic initial
data.

�iv� The present results, as with any FPU phenomenology,
is relevant to the dynamics of biomolecules only if it is ro-
bust with respect to inhomogeneities in the chain oscillators
�18�. We started to investigate the case of the �4 model with
random ��s. A few experiments with random models seem to
indicate that the phenomenology is robust.
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